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a b s t r a c t

Many hyperbolic systems of equations with stiff relaxation terms reduce to a parabolic
description when relaxation dominates. An asymptotic-preserving numerical method is a
discretization of the hyperbolic system that becomes a valid discretization of the parabolic
system in the asymptotic limit. We explore the consequences of applying a slope limiter to
the discontinuous Galerkin (DG) method, with linear elements, for hyperbolic systems with
stiff relaxation terms. Without a limiter, the DG method gives an accurate discretization of
the Chapman–Enskog approximation of the system when the relaxation length scale is not
resolved. It is well known that the first-order upwind (or ‘‘step”) method fails to obtain the
proper asymptotic limit. We show that using the minmod slope limiter also fails, but that
using double minmod gives the proper asymptotic limit. Despite its effectiveness in the
asymptotic limit, the double minmod limiter allows artificial extrema at cell interfaces,
referred to as ‘‘sawteeth”. We present a limiter that eliminates the sawteeth, but maintains
the proper asymptotic limit. The systems that we analyze are the hyperbolic heat equation
and the Pn thermal radiation equations. Numerical examples are used to verify our analysis.

� 2008 Published by Elsevier Inc.
1. Introduction

There is a multiplicity of physical phenomena that are described by a hyperbolic system of conservation laws with stiff
relaxation terms. Some examples are the radiation–hydrodynamics system [1,2], charge transport in semiconductors, and
neutron transport in scattering media [3,4]. The Chapman–Enskog approximation [5] to these systems displays parabolic
behavior to leading order [6]; this is often referred to as the asymptotic or diffusion limit.

Despite the fact that the underlying equations are parabolic in the asymptotic limit, there is no guarantee that a numerical
method for the hyperbolic system will limit to a valid discretization of the asymptotic limit of the continuous equations.
Methods that do limit to an accurate description in the asymptotic limit are said to be asymptotic preserving,2 a term coined
in Ref. [7]. Past work on such discretizations includes Refs. [6,8,9]. One type of method that has been shown to be asymp-
totic-preserving is the discontinuous Galerkin method with linear elements [1,10,11], which we will refer to throughout this
study as simply the ‘‘DG method”. However, these studies did not take into account the effect of a slope limiter on the ability
of the method to preserve the asymptotic limit.
y Elsevier Inc.
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Slope limiters are used to address the fact that second-order methods for hyperbolic problems must be nonlinear to avoid
artificial oscillations in the solution. A slope limiter nonlinearly adapts the numerical method to suppress artificial oscilla-
tions. On the other hand, in the asymptotic limit of many systems, a slope limiter is not necessary because in that limit the
system becomes a diffusion equation. Nevertheless, it is common to continue to use a slope limiter in such regions because it
may be difficult to assess locally when the asymptotic regime applies. In other systems advection is present in the asymp-
totic limit and a limiter remains necessary. For example, radiation transport in a static medium asymptotically reduces to a
parabolic equation in the small mean-free-path limit. A limiter is unnecessary in this limit. However, when radiation trans-
port is coupled with hydrodynamic motion, advection terms may dominate in the asymptotic limit and a slope limiter is use-
ful in all regimes.

It is known that the asymptotic-preserving quality of the DG method relies on the solution representation limiting to a
continuous function in the asymptotic limit [12]. We demonstrate that certain slope limiters will introduce discontinuities at
the cell edges. A consequence of breaking continuity can be the failure of the method to preserve the asymptotic limit. The
conservation laws that we consider are the hyperbolic heat equation and the PN equations of thermal radiation transport.

In the next section we begin by reviewing the DG method. We then apply the method to the hyperbolic heat equation and
examine its properties in the limit of large relaxation terms. After showing that the DG method without a slope limiter pre-
serves the asymptotic limit of the hyperbolic heat equation, we analyze the effects of a slope limiter in the asymptotic limit.
In Section 5, we introduce a modification to the double minmod limiter that removes false extrema, but maintains the proper
asymptotic behavior. Numerical results for the hyperbolic heat equation are presented in Section 6. We apply our analysis of
the hyperbolic heat equation to the thermal radiation transport equations and present numerical results in Section 7. In Sec-
tion 8, we present our conclusions from this study.

2. The discontinuous Galerkin method

In this section we review the discontinuous Galerkin method, with linear elements, for a hyperbolic system with source
terms. Again, we refer to this method as simply the DG method. This method has been shown in the past to be asymptotic
preserving without a slope limiter [1,12,13].

The general hyperbolic system that we will be analyzing can be written as
ou
ot
þ o

ox
fðuÞ ¼ sðuÞ; ð1Þ
where u, f(u) and s(u) are vectors of length p. To apply the discontinuous Galerkin method to this system we impose a spatial
mesh of cells, each on the interval [xm�1/2,xm+1/2] with Dxm = xm+1/2 � xm�1/2. We write the value of u in cell m as
umðx; tÞ ¼
Xk

j¼0

um;jðtÞBjðxÞ: ð2Þ
Here, Bj(x) is a basis function on cell m and k is the number of basis functions. These bases are defined on a reference element
where x 2 [xm�1/2,xm+1/2] is mapped to n 2 [0,1]. In this paper, we use linear elements so that
B1ðnÞ ¼ 1� n; B2ðnÞ ¼ n: ð3Þ
We now multiply Eq. (1) by a basis function Bj, integrate over a cell, and integrate the advection term by parts. This results in
Dx
d
dt

Z 1

0
dnBjðnÞuþ Bjð1Þfmþ1=2 � Bjð0Þfm�1=2 �

Z 1

0
dnfðuÞ o

on
BjðnÞ ¼ Dx

Z 1

0
dnBjðnÞsðuÞ; ð4Þ
where now we drop the cell index subscript ‘‘m” unless needed. The interface flux is defined as
fmþ1=2 ¼ Fðumðxmþ1=2; tÞ;umþ1ðxmþ1=2; tÞÞ; ð5Þ
where F is any suitable flux function.
When we replace u in Eq. (4) with the expansion (Eqs. (2) and (3)) and assume that both f(u) and s(u) also vary linearly

over the cell, we obtain
M
d
dt

u1

u2

� �
þ 1

2
f1 þ f2 � 2fm�1=2

fmþ1=2 � f1 � f2

� �
¼M

s1

s2

� �
; ð6Þ
where the mass matrix is given by
M ¼ Dx
6

2 1
1 2

� �
: ð7Þ
Then multiply through by M�1 to obtain
d
dt

u1

u2

� �
þ 1

Dx
�2fmþ1=2 � 4fm�1=2 þ 3ðf1 þ f2Þ
4fmþ1=2 þ 2fm�1=2 � 3ðf1 þ f2Þ

� �
¼

s1

s2

� �
: ð8Þ
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As in Ref. [1], we integrate Eq. (8) in time using a simple predictor–corrector approach. The predictor step is
Unþ1=2 � Un

Dt=2
þ Fn ¼ Snþ1=2; ð9Þ
where the superscript n represents the nth time level, and
U ¼
u1

u2

� �
; F ¼ 1

Dx
�2fmþ1=2 � 4fm�1=2 þ 3ðf1 þ f2Þ
4fmþ1=2 þ 2fm�1=2 � 3ðf1 þ f2Þ

� �
; S ¼

s1

s2

� �
: ð10Þ
The corrector step is
Unþ1 � Un

Dt
þ Fnþ1=2 ¼ Snþ1: ð11Þ
This time integrator is equivalent to second-order Runge–Kutta for the advection terms and backward Euler for the source
term.

Note that our treatment is semi-implicit: the advection is treated explicitly and the relaxation is implicitly integrated. The
method is stable without resolving the relaxation time scale. However, the explicit treatment of the advection terms results
in a time step limit based on the Courant number for the maximum absolute advection speed. The maximum allowable Cou-
rant number is 1/3 [14]. The overall method is locally implicit in the sense that Um,j is not implicitly coupled to values at
other m- and j-indices.
3. The hyperbolic heat equation

To show the properties of the DG method we will first examine the hyperbolic heat equation, a simple system of conser-
vation laws that limits to a parabolic description in the asymptotic limit. The analysis of this system will show why the DG
method works in the asymptotic limit and how slope limiters can cause it to fail.

The hyperbolic heat equation is a 2 � 2 system in the form of Eq. (1) given by
ou
ot
þ ov

ox
¼ 0; ð12Þ

ov
ot
þ ou

ox
¼ � v

s
; ð13Þ
where s P 0. The long time behavior of this system away from boundaries can be determined using the following scaling:
ou
ot
þ 1
�

ov
ox
¼ 0; ð14Þ

ov
ot
þ 1
�

ou
ox
¼ � v

s�2 ; ð15Þ
with � > 0. When � is small, u is governed to leading order in � by the heat equation [6,13]
ou
ot
¼ s o2u

ox2 ð16Þ
and, to leading order in �, v takes the form of a Fick’s law:
v ¼ �s ou
ox
: ð17Þ
The DG method (8) for this system takes
u ¼
u

v

� �
; f ¼ 1

�
v

u

� �
; s ¼ � 1

s�2

0
v

� �
: ð18Þ
We use the interface flux
fmþ1=2 ¼
1

2�
0 1
1 0

� �
um;2 þ umþ1;1

vm;2 þ vmþ1;1

� �
� 1

2�
1 0
0 1

� �
umþ1;1 � um;2

vmþ1;1 � vm;2

� �
: ð19Þ
This is the ‘‘frozen” upwind flux [2] based on an eigenfunction decomposition of the system ignoring the relaxation terms.

3.1. Asymptotic limit of DG method for the hyperbolic heat equation

We will now show that the DG method for the hyperbolic heat equation will give a valid discretization of Eqs. (16) and
(17) in the limit of small s and away from boundaries and initial layers. The analysis in this section complements that of
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Lowrie and Morel [13], who used a modified-equation analysis and lumped the mass matrix. Larsen et al. [8] have also shown
that the DG method has the proper asymptotic limit for linear transport.

We can quantify the resolution of small scales with the parameter h:
h ¼ Dx
s
; ð20Þ
where Dx is the mesh spacing (in previous work h has been called the numerical Peclet number [6]). We will be concerned
with the case where the h� 1. This case, also called the unresolved regime, implies that the numerical grid does not resolve
the relaxation scale. In the radiation transport community the analogous case is said to have optically thick cells, meaning Dx
is much greater than a mean free path for radiation. The unresolved regime has the relaxation term v/s dominating the
advection terms. In this regime, we desire a numerical method to solve to leading order the asymptotic limit of the original
equations. Such a method is said to be asymptotic preserving. For the hyperbolic heat equations we would like our method to
approximate the heat equation in the case of h� 1.

The semi-discrete DG method (6) may be written for each unknown as
M
d
dt

u1

u2

� �
þ 1

2�
vm;2 � vm�1;2 þ um;1 � um�1;2

vmþ1;1 � vm;1 þ um;2 � umþ1;1

� �
¼ 0 ð21Þ
and
M
d
dt

v1

v2

� �
þ 1

2�
um;2 � um�1;2 þ vm;1 � vm�1;2

umþ1;1 � um;1 þ vm;2 � vmþ1;1

� �
¼ � 1

s�2 M
v1

v2

� �
: ð22Þ
To proceed we assume a regular expansion of u and v in �:
ð�Þ ¼
X1
j¼0

�jð�ÞðjÞ: ð23Þ
By equating terms of equal order in �, Eq. (22) gives that
vð0Þm;1 ¼ vð0Þm;2 ¼ 0: ð24Þ
Using this result, Eq. (21) gives
uð0Þmþ1;1 ¼ uð0Þm;2 � uð0Þmþ1=2: ð25Þ
In other words, u(0) is continuous, with the value uð0Þmþ1=2 defined as the leading-order solution at the node location xm+1/2. The
continuity of the leading-order solution is referred to as a solvability condition in Ref. [12].

The O(�) terms of Eq. (22) are
1
2
ðuð0Þmþ1=2 � uð0Þm�1=2Þ

1
1

� �
¼ �1

s
M

vð1Þm;1

vð1Þm;2

 !
; ð26Þ
where we have used Eq. (25). Consequently,
vð1Þm;1 ¼ vð1Þm;2 ¼ �s
uð0Þmþ1=2 � uð0Þm�1=2

Dx
� vð1Þm ; ð27Þ
so that v(1) is constant in each cell m, with the value denoted as vð1Þm .
The O(�) terms of Eq. (21) are
Dx
6

d
dt

2uð0Þm�1=2 þ uð0Þmþ1=2

2uð0Þmþ1=2 þ uð0Þm�1=2

0
@

1
Aþ 1

2

vð1Þm � vð1Þm�1 þ uð1Þm;1 � uð1Þm�1;2

vð1Þmþ1 � vð1Þm þ uð1Þm;2 � uð1Þmþ1;1

 !
¼ 0; ð28Þ
where we have used Eqs. (25) and (27). If we substitute m ? m + 1 in the first equation, add it to the second, and use Eq. (27),
we obtain
1
6

d
dt
ðuð0Þmþ3=2 þ 4uð0Þmþ1=2 þ uð0Þm�1=2Þ ¼ s

uð0Þmþ3=2 � 2uð0Þmþ1=2 þ uð0Þm�1=2

Dx2 : ð29Þ
This is a valid spatial discretization of the heat equation, Eq. (16); indeed, it is the continuous, piecewise linear finite-element
discretization of Eq. (16), which is second-order accurate in space.
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4. Slope limiting

To avoid the creation of artificial oscillations in the solution, it is commonplace to use a slope limiter with the DG meth-
od.3 Slope limiters are typically not needed for DG in the asymptotic limit if the leading-order equations have no advection
terms. If advection terms are present in the asymptotic limit, then slope limiting is very useful in order to suppress artificial
oscillations. Even for systems that lack advection terms in the asymptotic limit, in many applications, it is not known a priori
locations where the asymptotic limit holds. In these problems a slope limiter, or some sort of ‘‘flux fix-up”, would likely be
applied throughout the domain. These reasons motivate our analysis of the effect of a slope limiting in the asymptotic limit.

The slope limiting process we follow is similar to that in Ref. [15]. After each predictor or corrector step, the average value
in each cell is computed:
3 It is
not elim
�um ¼
1
2
ðum;2 þ um;1Þ: ð30Þ
We then adjust the node values to be bounded by the neighboring cell averages:
~um;1 ¼ �um �
sm

2
; ð31Þ

~um;2 ¼ �um þ
sm

2
: ð32Þ
The slope in these equations is calculated, for each variable, using the formula
sm ¼minmodðum;2 � um;1;að�um � �um�1Þ;að�umþ1 � �umÞÞ; ð33Þ
with a 2 [0,2], and
minmodða; b; cÞ ¼
minðjaj; jbj; jcjÞ if signðaÞ ¼ signðbÞ ¼ signðcÞ;
0 otherwise:

�
ð34Þ
Different values of a give common slope limiters. When a = 0 we recover the first-order Godunov scheme. In the transport
literature, this method is referred to as the ‘‘step” method. With a = 1 we recover the minmod limiter, and for a = 2 we obtain
the double minmod [16] (or monotonized-central or TVD minmod [15]) limiter. The slope limiters described above are linear
once Eq. (34) is evaluated, a fact that has been taken advantage of in developing implicit methods for finite volume schemes
[17]. We will now show how the effects of the slope limiter can change the method’s behavior in the asymptotic limit.

4.1. Asymptotics of slope limited method

To analyze the slope limiter in the asymptotic regime we must make some assumptions about the shape of the solution in
order to evaluate Eq. (34) and remove the nonlinearities of the slope limiter. To begin with, we postulate that the solution in
the region of interest is a monotonic, increasing function of x. The case of a decreasing function follows trivially.

4.1.1. Step method
If we set a = 0, the DG method reduces to the step method. In this case we have
um;1 ¼ um;2 ¼ �um: ð35Þ
For transport, the step method has already been shown not to preserve the asymptotic solution [8], so we expect the same
result here.

The solvability condition that gave us the continuity of u(0), Eq. (25), in this case becomes
�uð0Þmþ1 ¼ �uð0Þm : ð36Þ
In other words, the step method gives a leading-order solution that is a constant. Continuing with the asymptotic analysis,
Eq. (27) then gives ~vð1Þ ¼ 0 and the ‘‘diffusion” equation we get is
1
6

d
dt
ðuð0Þmþ3=2 þ 4uð0Þmþ1=2 þ uð0Þm�1=2Þ ¼ 0: ð37Þ
This is clearly not the correct asymptotic limit: the leading-order solution is constant and the leading-order evolution equa-
tion is not a valid discretization of Eq. (16).

4.1.2. Minmod limiter
To begin our analysis, consider the difference
possible to damp oscillations by lumping the mass matrix of the finite element equations, which adds numerical dissipation. However, lumping does
inate all oscillations because the resulting method remains second order and linear.
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ð�umþ1 � �umÞ � ðum;2 � um;1Þ ¼
1
2

umþ1;2 � um;2 þ
1
2

um;1; ð38Þ
the sign of which determines which slope the minmod limiter selects for cell m.
Assuming a smooth solution, we Taylor expand about x = xm + Dx/2 to get
umþ1;2 ¼ um;2 þ Dx
ou
ox
þ Dx2

2
o2u
ox2 þ OðDx3Þ;

um;1 ¼ um;2 � Dx
ou
ox
þ Dx2

2
o2u
ox2 þ OðDx3Þ:
Substitute these expansions into Eq. (38) to obtain
ð�umþ1 � �umÞ � ðum;2 � um;1Þ ¼
Dx2

2
o2u
ox2 þ OðDx3Þ: ð39Þ
Similarly,
ðum;2 � um;1Þ � ð�um � �um�1Þ ¼
Dx2

2
o2u
ox2 þ OðDx3Þ: ð40Þ
Hence, for smooth data, the manner which minmod modifies the slope depends entirely on the second derivative of the
solution.

First we will look at the case of the second derivative being positive. If the second derivative is positive, then the cell-aver-
age slope to the left of the cell is the smallest. The minmod slope for cell m is then
~sm ¼
1
2
ðum;2 þ um;1 � um�1;2 � um�1;1Þ ¼

1
2
ðum;2 � um�1;1Þ: ð41Þ
Using this slope the limited nodal values are
~um;1 ¼
1
2

um;1 þ
1
4

um;2 þ
1
4

um�1;1; ð42Þ

~um;2 ¼
1
2

um;1 þ
3
4

um;2 �
1
4

um�1;1: ð43Þ
Consequently, the jump at the cell interface is given by
~umþ1;1 � ~um;2 ¼
1
4
ðumþ1;2 � um;2 � um;1 þ um�1;1Þ: ð44Þ
Therefore, the minmod limiter does not maintain a continuous solution if the solution has a positive second derivative.
Specifically, using Eq. (44), the leading-order solution replaces Eq. (25) with
~uð0Þmþ1;1 ¼ ~uð0Þm;2 � ~uð0Þmþ1=2: ð45Þ
Using the definitions of the minmod limited values in Eq. (45) leads to
uð0Þmþ1;2 � uð0Þm;2 � uð0Þm;1 þ uð0Þm�1;1 ¼ 0: ð46Þ
For a smooth solution, this equation gives that
o2uð0Þ

ox2 ¼ OðDxÞ: ð47Þ
Hence, the minmod limiter will force the second derivative of the solution to be order Dx (and, therefore, the solution
approximately linear) when the relaxation terms are not resolved.

To get the minmod version of Eq. (29) we will use the identity
2~umþ1=2 ¼ ~um;2 þ ~umþ1;1: ð48Þ
Substituting this into the limited version of Eq. (29) leads to
1
6

d
dt
ðuð0Þmþ3=2 þ 4uð0Þmþ1=2 þ uð0Þm�1=2Þ ¼ s

uð0Þmþ1;2 � uð0Þm;2 � uð0Þm;1 þ uð0Þm�1;1

Dx2 : ð49Þ
The difference on the RHS of Eq. (49) is exactly the condition in Eq. (46). Therefore, the leading-order evolution equation is
1
6

d
dt
ðuð0Þmþ3=2 þ 4uð0Þmþ1=2 þ uð0Þm�1=2Þ ¼ 0: ð50Þ
This is not a valid asymptotic limit. While for the minmod case the evolution equation is the same as in the step limiter, the
minmod limiter will support a linear variation inside each cell whereas the step limiter makes the solution constant in each
cell. Given this fact we would expect the minmod limiter to give smaller errors than the step limiter.
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Although the above analysis assumed that the second derivative of u is positive, if we assume the second derivative of u is
negative, then the slope to the right of cell m is used and the same result as Eq. (50) is obtained.

4.1.3. Double minmod
Previously, it was shown by Cockburn and Shu that the double minmod limiter will not effect smooth solutions away

from extreme points [15]. Here, we briefly reprise an analysis that shows how this property allows the limiter to preserve
the asymptotic limit.

In the case of the double minmod limiter we will follow the same procedure as for the minmod limiter, except there will
be a factor of two multiplying the differences between cell averages. The double minmod version of Eq. (38) is
ðum;2 � um;1Þ � 2ð�umþ1 � �umÞ ¼ �Dx
ou
ox
þ OðDx2Þ: ð51Þ
This implies that um,2 � um,1 < 2(�um+1 � �um) because Eq. (51) is negative for any positive Dx and we assumed from the outset
that the solution was increasing. We now compare um,2 � um,1 and 2(�um � �um�1):
ðum;2 � um;1Þ � ð�um � �um�1Þ ¼ �Dx
ou
ox
þ OðDx2Þ: ð52Þ
This result is also negative for any Dx implying that the slope, sm is
sm ¼ um;2 � um;1: ð53Þ
That is to say that node values will be unchanged by the double minmod limiter in this case of a smooth, monotonic function.
The double minmod limiter does not change Eq. (25), allowing the rest of the asymptotic analysis to be valid and preserving
the asymptotic limit of the hyperbolic heat equation.

The analysis above applies when the solution is monotone, but not at an extremum in the solution. For the remainder of
this section, we will show that for an isolated extremum, a valid diffusion limit is obtained. To begin, it is straightforward to
show that with no limiter, Eq. (29) implies that the leading-order, cell-average values satisfy a similar form:
1
6

d
dt
ð�uð0Þmþ1 þ 4�uð0Þm þ �uð0Þm�1Þ ¼ s

�uð0Þmþ1 � 2�uð0Þm þ �uð0Þm�1

Dx2 : ð54Þ
Again, this is a second-order accurate discretization of the heat equation.
Consider an isolated extremum within a cell with index m. Any limiter of the form (33) will zero the slope in cells whose

cell-average value is a local extremum, so that
uð0Þm;1 ¼ uð0Þm;2 � �uð0Þm : ð55Þ
Using the solvability condition, Eq. (25), the leading-order numerical solution at the node locations m ± 1/2 is continuous.
The double minmod limiter does not break this continuity. Therefore, the value �uð0Þm is determined by Eq. (54), and Eq.
(55) gives that
uð0Þm�1=2 ¼ uð0Þmþ1=2 � �uð0Þm : ð56Þ
Away from the extremum, the node values uð0Þk�1=2, for k < m and k > m + 1, are governed by Eq. (29). In words, Eq. (54) applies
in the cell containing the extremum, with its surrounding node values given by Eq. (56). For all other nodes, Eq. (29) holds.
Eqs. (54) and (29) are both second-order accurate discretizations of the heat equation, although Eq. (56) is a first-order inter-
polant in space. How this local error analysis manifests itself into the global error is left for future work. The convergence rate
can be no worse than first order. But our numerical results in Section 6 will demonstrate that the numerical solution con-
verges at roughly a second-order rate to the asymptotic solution.

Away from the asymptotic limit, in general, a slope limiter might adjust the slope in the cells on either side of the cell with
the extremum. However, in the asymptotic limit, this is no longer the case. When the cell at an extreme point is slope lim-
ited, the neighboring cells will still have continuous cell edge values (guaranteed by the solvability condition). This continu-
ity of the discrete solution, coupled with Eq. (56), means that double minmod will not affect the neighboring cells. Our
numerical results will demonstrate that cells away from the extreme point are not affected.

The final possibility is that the extremum occurs exactly at the interface between two cells. Let the corresponding cell
indices be m and m + 1. Any limiter of the form (33) will zero the slope in both of these cells. But it is easy to show that
the quantity
~uð0Þmþ1=2 ¼
1
2
ð�uð0Þm þ �uð0Þmþ1Þ ð57Þ
satisfies the discretization of the form (29). Also, following similar arguments as above,
uð0Þm�1=2 ¼ uð0Þmþ1=2 ¼ uð0Þmþ3=2 � ~uð0Þmþ1=2 ð58Þ
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and away from the extremum, the node values uð0Þk�1=2, k < m and k > m + 2, are governed by Eq. (29). Similar to the case where
the slope is limited only in a single cell, the evolution equations are second-order accurate in space, but the interpolant (58)
is locally only first-order accurate.

5. Sawtooth-free limiter

The double minmod method will preserve the asymptotic limit for the hyperbolic heat equation. One issue with this lim-
iter is that it allows false extrema, or ‘‘sawteeth”, in the solution when the cell-edge values are plotted. Though the double
minmod limiter gives a method that is total variation diminishing in the means [15], in strongly nonlinear problems or prob-
lems where the cell-edge values feed into another physical operator these sawteeth can lead to a lack of robustness in engi-
neering calculations. In order to eliminate the sawteeth, in this section we seek a more diffusive limiter that still maintains
the proper asymptotic limit.

A sawtooth at the edge between cell m and m + 1 is defined as when the slope in both cells have the same sign:
ðum;2 � um;1Þðumþ1;2 � umþ1;1Þ > 0; ð59aÞ
but the difference at the cell edge has a different sign than the slope:
ðum;2 � um;1Þðumþ1;2 � um;2Þ < 0: ð59bÞ
We can eliminate these sawteeth with an approach that is very similar to the removal of false extrema by Liu and Osher [18].
Our method begins with an application of the double minmod limiter, to give limited values that we will refer to in this

section as um,j. We then perform a cell-by-cell check for sawteeth. In cell m we check each edge for a sawtooth using the
conditions (59). If only one side has a sawtooth, for example the interface of um,2 and um+1,1, it is removed by the following
procedure. First, we compute a desired face value, uface:
uface ¼
um;2 þ umþ1;1

2
ð60Þ
and then define a new slope for cell m and m + 1:
~sm ¼ 2ðuface � �umÞ; ð61Þ
~smþ1 ¼ 2ð�umþ1 � ufaceÞ: ð62Þ
Using these slopes we compute new values at the nodes in the cell:
~um;1 ¼ �um �
1
2

~sm; ~um;2 ¼ �um þ
1
2

~sm: ð63Þ
If both sides of the cell have a sawtooth, we then compute the difference between nodes on each side:
Dmþ1=2 ¼ umþ1;1 � um;2; ð64Þ
Dm�1=2 ¼ um;1 � um�1;2: ð65Þ
Whichever edge has a D of a larger magnitude, on that side we correct that edge as though it were the only sawtooth.
This procedure has the effect of, in the case of a sawtooth on both sides of the cell, making the edge with a smaller saw-

tooth a jump. To see this we look at the example of jDm+1/2j > jDm�1/2j and an increasing function. If we assume that the m � 1
has only one sawtooth, then
~um�1;2 ¼
1
2
ðum;1 þ um�1;2Þ: ð66Þ
The value of the left edge of cell m will be
~um;1 ¼ �um �
1
2

~sm ¼
1
2
ð2um;1 � Dmþ1=2Þ: ð67Þ
Because we are dealing with the case where sm is positive, Dm+1/2 is negative and Dm�1/2 is negative but of a lesser magnitude.
This implies that
~um;1 > �um �
1
2

~sm ¼
1
2
ð2um;1 � Dm�1=2Þ ¼

1
2
ðum;1 þ um�1;2Þ ¼ ~um�1;2: ð68Þ
Therefore, there will be a jump at left edge of cell m instead of a sawtooth.
We now will show that our procedure from removing sawteeth does not increase the value of jsmj. To illustrate this we

will assume that we are removing the sawtooth at the right edge of the cell; however, our treatment trivially generalizes to a
sawtooth on the left edge. The value of sm after the initial pass of the double minmod limiter is um,2 � um,1 and
sm+1 = um+1,2 � um+1,1. We note that when these initial slopes sm and sm+1 are positive, that
umþ1;1 6 uface 6 um;2: ð69Þ
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In this case then
Fig. 1.
The num
~sm 6 ðum;2 � um;1Þ ¼ sm: ð70Þ
The same argument holds for the case of sm and sm+1 both negative. In this case
um;2 6 uface 6 umþ1;1: ð71Þ
This leads to
sm P 2ð�um � ufaceÞ ¼ ~sm: ð72Þ
Hence, our step to remove sawteeth will not increase the magnitude of the slope.
Finally, our implementation of this procedure stores the ũ’s separately so that the limited results are independent of the

order in which cells are visited.

6. Numerical results

We will now demonstrate the conclusions of our analysis with numerical results. In these results the time integration
method used is the predictor corrector method given in Section 2 and we will define the CFL number as CFL = cDt/Dx.

Consider an infinite medium and the following initial condition:
uðx;0Þ ¼ vðx;0Þ ¼ Hðx� 1ÞHð2� xÞ; ð73Þ
where H(x) is the Heaviside step function.
The exact solution to Eq. (16) for this problem is
uðx; tÞ ¼ 1
2

Erf
x� 1
2
ffiffiffiffiffi
st
p

� �
� Erf

x� 2
2
ffiffiffiffiffi
st
p

� �� �
; ð74Þ
where Erf(z) is the error function.
Figs. 1 and 2 show the effects of different limiters for this problem. The numerical solutions were obtained using a large

enough domain so that information from the initial condition never made it to the simulation boundary. With s = 10�2 the
step method is already unacceptably inaccurate, as shown in Fig. 1. In this case, h = 200, and thus the problem is moderately
stiff. Although the minmod limiter performs better than step, it does not capture the exact solution. The double minmod lim-
iter captures the asymptotic solution quite well. The sawtooth-free limiter results are slightly different than the double min-
mod results. This discrepancy arises from the fact that the initial condition is not a diffusion solution, which induces a
numerical initial layer. This initial layer is not symmetric about x = 1.5 because v(x,0) – 0 introduces directionality into
the initial layer. In the first time step the double minmod limiter produces sawteeth, one on each side of the square wave,
and the sawtooth-free limiter removes these. Despite this different treatment early in the problem, both the double minmod
and sawtooth-free limiters capture the asymptotic solution.
Comparison of different slope limiters with an exact solution to the asymptotic limit equations with a square initial condition and s = 10�2 at t = 5.
erical solutions used: Dx = 0.1 and CFL = 0.3.



Fig. 2. The results from different limiters on a stiffer version of the problem (s = 10�5) from Fig. 1 at t = 100. The numerical solutions used: Dx = 0.1 and
CFL = 0.3.
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In the stiffer version of this problem (h = 2 � 104) shown in Fig. 2, only the double minmod and sawtooth-free limiters
give a reasonable solution. In this problem the differences between the sawtooth-free and double minmod limiters can
be readily seen in the edges of the square wave.

To demonstrate the need for the sawtooth-free limiter we also solve a problem without significant relaxation terms. Figs.
3 and 4 give a solution to the square wave problem defined above but with s = 1010. In these figures the hyperbolic solution
to this problem and the diffusion solution are shown. In this problem we would expect our numerical method to approxi-
mate the hyperbolic solution because the relaxation terms are so small. The results show that the double minmod limiter
performs the best in capturing the shape of the solution. However, the sawteeth in the double minmod solution are apparent.
The sawtooth-free limiter does remove the sawteeth while sacrificing a small amount of accuracy. Despite being less accu-
rate than double minmod, the sawtooth-free limiter performs better than the minmod limiter.

The next problem we will look at has an initial condition of
Fig. 3.
Dx = 0.0
uðx; 0Þ ¼ 3 sin
px
3

� 	
þ 3; vðx;0Þ ¼ 0 ð75Þ
Solutions from the square wave problem with s = 1010 at t = 1. In this problem the relaxation terms are negligible. The numerical solutions used:
25 and CFL = 0.3.



Fig. 4. Detail of Fig. 3.
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and periodic boundary conditions. The exact solution to the heat equation for this initial condition is
uðx; tÞ ¼ 3þ 3e�
p2
9 st sin

px
3

� 	
: ð76Þ
The solution to this problem will have clipping at the extrema of the sine wave, and results for this situation will further
explore the behavior at extreme points. Fig. 5 shows the behavior of the error with mesh refinement. Here, a sine wave initial
condition is used, s = 10�4, and the errors are computed at t = 500. In Fig. 5, the error is measured in the L1 norm of the nodal
values:
L1ðuasymptoticðx; tÞ � unumericalðx; tÞÞ ¼ max
m¼1;...;Nx

juasymptoticðxm; tÞ � unumericalðxm; tÞj: ð77Þ
Here, Nx is the number of node values. The results show that errors from the double minmod and sawtooth-free methods
decay at a second-order rate, despite the clipping of extrema. This convergence study has every value of Dx� s, and there-
fore, tests the convergence in the asymptotic limit. The step and minmod limiters show no convergence when the relaxation
term is totally unresolved. The error using the minmod limiter does not begin to decrease until Dx 6 0.1; the step limiter’s
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Fig. 5. The L1 error for the sine wave problem with s = 10�4 and CFL = 0.3 at t = 500.
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error is constant. Once the minmod limiter does begin to converge it does so at O(Dx1.3). The smallest error in the minmod
solution was no better than the highest error in the solutions with the double minmod or sawtooth-free limiters.

6.1. Advection–diffusion results

If the second equation in the hyperbolic heat system, Eq. (13), is modified to
Fig. 6.
Pe = 10
ov
ot
þ ou

ox
¼ 1

s
ðau� vÞ; 0 < a2 < 1: ð78Þ
The asymptotic limit of the system becomes [13]
ou
ot
þ a

ou
ox
¼ sð1� a2Þ o

2u
ox2 : ð79Þ
Whereas the asymptotic limit in the case of a = 0 was a diffusion equation, Eq. (16), the limit when a – 0 has a streaming
term. Therefore, a numerical method for Eq. (79) will require a slope limiter in the asymptotic limit. A slope limiter will be-
come more important when the streaming term dominates the diffusion term.

We can quantify the amount of streaming compared with relaxation by defining a Peclet number for this equation [13]
Pe ¼ a
sð1� a2Þ : ð80Þ
For large values of Pe the asymptotic limit will be dominated by the streaming term; Pe ? 0 causes the diffusive term to
dominate.

This advection–diffusion limit was examined by Lowrie and Morel [13] for the DG method without a slope limiter. They
showed that the DG method was asymptotic preserving for any Peclet number. Here we will see that the slope limiter affects
this property of the DG method.

We will apply the different slope limiters to the modified problem with a–0. The initial condition is Eq. (75), and in this
case the solution is
uðx; tÞ ¼ 3þ 3e
p2
9 ða

2�1Þst sin
p
3
ðx� atÞ

� 	
: ð81Þ
The error convergence for this problem are shown in Fig. 6. Each simulation was run until the initial condition propagated
one wavelength.

For a Peclet number of 100, the double-minmod and sawtooth-free limiters converged to the analytic solution at second
order. When the Peclet number was 106 (a problem that is dominated by advection), the double-minmod and sawtooth-free
limiters converged at a rate of O(Dx1.6). We observed the same convergence rate when the double minmod limiter was
applied to a linear advection problem with a sinusoidal solution. For this high Peclet number the sawtooth-free limiter
performed slightly better than the double minmod limiter. This is due to the fact that because advection dominates in this
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The L1 error for the case of advection and diffusion with s = 10�4 and CFL = 0.3. The solid symbols have Pe = 100 while the outlined symbols have
6.
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problem, sawteeth do develop and affect the L1 norm of the error. The sawtooth-free limiter improves the solution error by
removing these sawteeth.

At Pe = 100 the minmod limiter did not converge, whereas, at the high Peclet number the method converged at a rate of
O(Dx1.2). The discrepancy between convergence rates at low versus high Peclet numbers for the minmod method is analo-
gous to the behavior of the Liotta, Romano and Russo method (LRR) [19]. The LRR method, like the minmod limited discon-
tinuous Galerkin method, is convergent for large Peclet numbers, but does not converge for small Peclet numbers when the
relaxation terms are not resolved [13].

7. Thermal radiation transport equations

We will now extend our analysis of the hyperbolic heat equation to the more complicated case of thermal radiation trans-
port. This system has nonlinear relaxation terms. For a discrete version of this system our results from the hyperbolic heat
analysis will carry over.

The equations of thermal radiation transport are governed by an infinite-dimensional hyperbolic system of equations
coupled to an equation that models the internal energy of the background material. The grey intensity of radiation,
I(x,l, t), in plane-parallel geometry is given by [20]
1
c

oI
ot
þ l oI

ox
þ rI ¼ 1

2
racT4; ð82Þ
where l 2 [�1,1] is the direction-of-flight or angular variable, r(x, t) is the absorption opacity, a is the radiation constant and
T(x, t) is the temperature of the material the radiation is transporting through. The material temperature is governed by
oe
ot
¼
Z 1

�1
dlr I � 1

2
acT4

� �
ð83Þ
with e(x, t,q,T) internal energy. The internal energy is related to the temperature through an equation of state. When the
background material is stationary we can write
oe
ot
¼ oe

oT
oT
ot
¼ Cv

oT
ot
: ð84Þ
Cv is the heat capacity of the material.
The thermal radiation transport system asymptotically limits to a nonlinear diffusion equation. This is derived by making

the opacity large and the temporal variations small using a small, positive, parameter � [21] to get
�
1
c

oI
ot
þ l oI

ox
þ r
�

I ¼ 1
2�

racT4; ð85Þ

�
oe
ot
¼
Z 1

�1
dlr
�

I � 1
2

acT4
� �

: ð86Þ
In the limit of small � the leading order the intensity is in equilibrium with the blackbody source
I ¼ 1
2

acT4 ð87Þ
and the leading-order temperature is governed by
oe
ot
þ a

oT4

ot
¼ ac

o

ox
1

3r
oT4

ox
: ð88Þ
7.1. PN equations

The radiation transport system is continuous in l as well as x and t. There are various ways of treating the direction-of-
flight variable, and the one we will discuss is the spherical harmonics (PN) method. In one-dimensional problems this
approach expands l in Legendre polynomials. The expansion is truncated at some level n. Eqs. (82) and (83) become
[22,23]
1
c

oI0

ot
þ oI1

ox
þ rI0 ¼ racT4; l ¼ 0; ð89aÞ

1
c

oIl

ot
þ l

2lþ 1
oIl�1

ox
þ lþ 2

2lþ 1
oIlþ1

ox
þ rIl ¼ 0; 1 6 l 6 n: ð89bÞ
The moments of the intensity, Il, are defined by
Il ¼
Z 1

�1
PlðlÞIðlÞdl; ð90Þ
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where Pl is the lth Legendre polynomial. To close the system, In+1 is set to zero. The material energy equation only involves
the zeroth moment of I:
Fig. 7.
problem
numeri
oe
ot
¼ r I0 � acT4

� 	
: ð91Þ
We use the same time integration as described in Section 2. The time integration for the PN equations is different from the
hyperbolic heat equation because of the nonlinearities arising from the T4 terms. We use a linearization based on a first-order
Taylor expansion of T4; see Refs. [24,25] for details.

McClarren et al. [24] showed that the asymptotic limit of the DG method for the PN equations gives a valid discretization
of Eq. (88) and enforces the equilibrium of Eq. (87).

The analysis that leads to this discrete diffusion equation hinges on the fact that in the limit of small �, I0 is continuous on
a cell edge. In this respect, the asymptotic analysis is similar to that for the hyperbolic heat equation presented earlier. In
their study, McClarren et al. did not consider the effects of a slope limiter on the diffusion limit. A slope limiter that breaks
continuity will modify these equations and give a different leading-order equation for I0 as in our analysis of the hyperbolic
heat equation. Though a slope limiter can break the diffusion limit, it will not harm the equilibrium between the blackbody
source and I0.

As in the hyperbolic heat equation, the method will make the cell-averages equal,
�Ið0Þ0;mþ1 ¼ �Ið0Þ0;m; ð92Þ
and the minmod limiter will give that the second derivative of the leading-order solution will be of order Dx:
o2Ið0Þ0

ox2 ¼ OðDxÞ: ð93Þ
Both step and minmod will give the incorrect evolution equation as derived for the hyperbolic heat case.
The double minmod limiter (and the sawtooth-free version of this limiter) will not corrupt the continuity of I0 and will

lead to a correct diffusion discretization.

7.2. Numerical results

A common problem with stiff temperature feedback is the Marshak wave problem in a highly absorptive medium. This
problem has an initial cold semi-infinite medium with a 1 keV temperature source at x = 0. The material has r = 300/T3

where the units of r are cm�1 and T is in keV along with Cv = 0.3 � 1016 erg/cm3/keV. In this problem the diffusion solution
will agree with the transport solution because the background material is so optically thick that transport effects are neg-
ligible. There is a semi-analytic diffusion solution to this problem that we will compare numerical results to. For our numer-
ical solution we will use an initial condition of T(x,0) = 10�9 keV and I(x,0) = 1/2ac(T(x,0))4.

The numerical solutions in Figs. 7 and 8 show the necessity of having a limiter that preserves the continuity of the numer-
ical solution. In these results h (h = rDx in radiation problems) ranges from 11 in the warm region of the problem to 1028 in
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the cold regions. Fig. 7 demonstrates that the step method gives a nearly flat solution as predicted by our analysis. The min-
mod limiter performs better than step, but near the sharp wavefront the limiter forces the solution to have a negligible sec-
ond derivative. This is especially clear in the 10 ns solution where the wavefront is warped into a linear curve. The double
minmod limiter, as predicted, captures the diffusion solution as well as possible using a coarse grid. The sawtooth-free lim-
iter also captures the diffusion solution, but is different than the double minmod answer at the edge of the wavefront. The
wavefront is non-smooth and not even double minmod can remain continuous in this region of the problem. This allows the
creation of sawteeth leading to the difference between the double minmod solutions and the sawtooth-free results. Despite
the differences at the wavefront, the sawtooth-free and double minmod solutions agree well in the smooth regions of the
solution.

8. Conclusions

In this study, we have shown that in order to preserve the asymptotic behavior of the DG method, a slope limiter should
not introduce discontinuities at the cell edge. The minmod limiter introduces discontinuities and thus fails to preserve the
asymptotic limit. We showed that the double minmod limiter is asymptotic preserving, along with a ‘‘sawtooth-free” limiter
that we introduced. The sawtooth-free limiter is more diffusive than double minmod, but should also be more robust for
highly nonlinear systems. Our analysis was applied to the hyperbolic heat equation and the thermal PN equations and
numerical results backed up the results of our analysis. Future work should apply these limiters to more complex systems.
In more complex cases, it may be necessary to avoid clipping of smooth extrema, such as by using the smoothness detector of
Ref. [15].
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